
1 Fundamentals of Quantum Mechanics

In this chapter we summarize the main elements of non-relativistic quantum mechanics.
We will do so through a list of postulates and principles that can be followed for the
application of the quantum mechanical formalism to specific problems. Although some of
the postulates could be “derived” from more fundamental principles (e.g., the Schrödinger
equation), we will not proceed along that path, which is covered in more elementary
textbooks on quantum mechanics. We will also derive some important results, dealing
with aspects of quantum mechanics that either physical or mathematical in nature.
Most of the material presented in this chapter is taken from Auletta, Fortunato and

Parisi, Chaps. 1-3, and Cohen-Tannoudji, Diu and Laloë, Vol. I, Chap. 3.

1.1 The Postulates of Quantum Mechanics

1.1.1 First Postulate

At a given time t, the physical state of a system is described by a ket |ψ (t)〉 (using
Dirac’s notation). From this ket a wave function dependent on position and time can be
defined by the projection onto a basis defined by the bra 〈r|. That is, the wave function
is given by

ψ (r, t) ≡ 〈r |ψ (t)〉 . (1.1)

The symbol 〈 | 〉 is usually called a bracket .

Equation (1.1) is the result of the following two definitions. First, the bracket is by
definition a scalar product

〈ϕ |χ〉 ≡
∫ ∞
−∞

d3xϕ∗ (x)χ (x) , (1.2)

where ∗ stands for complex conjugation. Second, to the ket |r〉 is associated a Dirac
distribution

|r〉 ⇐⇒ δ (x− r) , (1.3)

such that

〈r |ψ (t)〉 =

∫ ∞
−∞

d3x δ (x− r)ψ (x, t)

≡ ψ (r, t) (1.4)
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since δ∗ (x) = δ (x). Note that the “orthogonality” of the |r〉 kets is apparent from

〈
r′
∣∣ r〉 =

∫ ∞
−∞

d3x δ
(
x− r′

)
δ (x− r)

= δ
(
r− r′

) ∫ ∞
−∞

d3x δ (x− r)

= δ
(
r− r′

)
. (1.5)

1.1.2 Second Postulate

For every measurable physical quantity A corresponds an operator Â, and this operator
is an observable.

It is often the case that a representation of kets and operators is done through vectors
and matrices, respectively. The action of the operator on the ket, in general, produces a
new ket

|ϕ〉 = Â |ψ〉 , (1.6)

and this action is the mathematical equivalent of the multiplication of a matrix and a
vector. It follows that a bra can be represented by a row vector such that, for example

〈ϕ| =
(
Â |ψ〉

)†
= 〈ψ| Â†, (1.7)

with Â† the adjoint of Â and, by definition, (|ψ〉)† = 〈ψ|.

1.1.3 Third Postulate

The outcome of the measurement of a physical quantity A must be an eigenvalue of the
corresponding observable Â.

Since observables are related to physical quantities, then the matrix associated with
them must be Hermitian. This is because the eigenvalues of Hermitian matrices are real
quantities (in a mathematical sense). Recall that a matrix is Hermitian when

Âij = Â∗ji, (1.8)

Alternatively, a Hermitian operator is one that is self-adjoint. That is,

Â† = Â. (1.9)

When the matrix is of finite dimension the eigenvalues are quantized (a “matrix” of
infinite dimension would correspond to a continuum; for example, a matrix acting on
|r〉 would have to be of infinite dimension as |r〉 encompasses the continuum made of all
possible positions).
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1.1.4 Fourth Postulate

The ket, say |ψ (t)〉, specifying the state of a system is assumed normalized to unity.
That is,

〈ψ (t) |ψ (t)〉 = 1. (1.10)

Alternatively, the associated wave function is also normalized, since

〈ψ (t) |ψ (t)〉 =

∫ ∞
−∞

d3xψ∗ (x, t)ψ (x, t)

=

∫ ∞
−∞

d3x |ψ (x, t)|2

= 1. (1.11)

This ket can also be expanded using any suitable (complete) basis of kets. For example,
using the {|r〉} basis we have

|ψ (t)〉 =

∫ ∞
−∞

d3r c (r, t) |r〉 , (1.12)

where c (r, t) is a complex coefficient (for this particular case it is actually the wave
function itself, see equations (1.1) and (1.4)) resulting from the projection of |ψ (t)〉 on
〈r|. Equation (1.12) can therefore be written as

|ψ (t)〉 =

∫ ∞
−∞

d3r [〈r |ψ (t)〉] |r〉 . (1.13)

Rearranging this last equation we have

|ψ (t)〉 =

[∫ ∞
−∞

d3r |r〉〈r|
]
|ψ (t)〉 , (1.14)

which implies that ∫ ∞
−∞

d3r |r〉〈r| = 1̂, (1.15)

where 1̂ is the unit operator (or matrix). Similarly any other normalized ket |ϕ〉 that can
be expanded with a (complete) discrete and orthonormal basis |ui〉 (i.e., 〈ui |uj〉 = δij)
with

|ϕ〉 =
∑
i

[〈ui |ϕ〉] |ui〉

=
∑
i

ci |ui〉 , (1.16)

is also normalized to unity, and we have the following relation for the basis
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∑
i

|ui〉〈ui| = 1̂. (1.17)

Equation (1.17) (as well as equation (1.15)) is a completeness relation that must be
satisfied for the corresponding basis to be complete. In consideration of these facts and
definitions, we can state the fourth postulate of quantum mechanics as follows:

In measuring the physical quantity A on a system in the state |ψ〉, the probability of
obtaining the (possibly degenerate) eigenvalue “a” of the corresponding observable is

P (a) =

gn∑
i

∣∣〈uin ∣∣ψ〉∣∣2 , (1.18)

for discrete states, with gn the degree of degeneracy of “a”, and
{∣∣uin〉} the set of degen-

erate eigenvectors. For continuum states the corresponding probability is given by

dP (a) = |〈va |ψ〉|2 da, (1.19)

where |va〉 is the eigenvector associated with the eigenvalue “a”.

We can apply this postulate to the case of a discrete degenerate state by starting with
a generalization of equation (1.16)

|ψ〉 =
∑
n

gn∑
i=1

cin
∣∣uin〉 . (1.20)

Projecting this state on the set of states
∣∣∣ujm〉 of degeneracy gm (i.e., j = 1, 2, . . . , gm),

and taking the sum of the square of the norm we get

gm∑
j=1

∣∣〈ujm ∣∣ψ〉∣∣2 =

gm∑
j=1

∣∣∣∣∣∑
n

gn∑
i=1

cin
〈
ujm
∣∣uin〉

∣∣∣∣∣
2

=

gm∑
j=1

∣∣∣∣∣∑
n

gn∑
i=1

cinδijδmn

∣∣∣∣∣
2

=

gm∑
j=1

∣∣cjm∣∣2 . (1.21)

We therefore see that the probability of finding the system in a state (or group of states)
possessing a given eigenvalue is proportional to the square of the coefficients cjm that
appear in the expansion defining the state in term of the basis under consideration (as
is evident from equation (1.20)).
Alternatively, we define the projector P̂n
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P̂n ≡
gn∑
i=1

∣∣uin〉〈uin∣∣ (1.22)

as the operator that projects a given state, say |ψ〉, on the subspace containing the set of
eigenvectors

{∣∣uin〉} that share the same eigenvalue. For example, using equation (1.22)
on |ψ〉 we find

P̂n |ψ〉 =

gn∑
i=1

∣∣uin〉 〈uin ∣∣ψ〉
=

gn∑
i=1

cin
∣∣uin〉 , (1.23)

and it is clear from a comparison with equation (1.20) that the only part of |ψ〉 that is
left is that corresponding to the subspace containing the eigenvectors

{∣∣uin〉}. It should
be clear that there are as many projectors P̂n, similarly defined through equation (1.22)
for all possible gn, as there are independent subspaces. We then have a generalization of
equation (1.17) with

P̂d =
∑
n

P̂n

=
∑
n

gn∑
i=1

∣∣uin〉〈uin∣∣
= 1̂, (1.24)

where the unit operator 1̂ covers the full space. For a continuum of states, the projector on
the subspace {|va〉} corresponding to the domain of eigenvalues specified by a1 ≤ a ≤ a2
is

P̂∆a =

∫ a2

a1

|va〉〈va| da, (1.25)

and for the full space we have

P̂c =

∫ ∞
−∞
|va〉〈va| da

= 1̂. (1.26)

It is important to note that projectors can always be used to define quantum observ-
ables as follows (for the discrete case)

Â =
∑
n

anP̂n. (1.27)
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When applied to an eigenvector
∣∣∣ujm〉 the operator yields

Â
∣∣ujm〉 =

∑
n

anP̂n
∣∣ujm〉

=
∑
n

an

gn∑
i=1

∣∣uin〉 〈uin ∣∣ujm〉
=

∑
n

an

gn∑
i=1

∣∣uin〉 δijδmn
= am

∣∣ujm〉 . (1.28)

That is, when operating on an eigenvector the observable yields a measurement of the
associated eigenvalue. For continuous states the counterpart to equation (1.27) is

Â =

∫
da aP̂ (a) , (1.29)

with P̂ (a) = |va〉〈va|. It is, however, important to note that the action of an observable
on a generic state vector does not always yield a measurement (i.e., the result is not the
same state vector multiplied by its eigenvalue). For example, let us consider the state

|ϕ〉 =
1√
2

(|u1〉+ |u2〉) , (1.30)

then with Â defined with equation (1.27)

Â |ϕ〉 =
1√
2

(a1 |u1〉+ a2 |u2〉) . (1.31)

Rather than resulting in a measurement this process yields a transformation of the initial
state vector.
Finally, it can happen that the spectrum (i.e., the set of all possible eigenvalues) of

an observable contains both discrete and continuum subspaces. For example, if the
eigenvalues a ≥ am are part of the continuum then

P̂ = P̂d + P̂c

=
∑
n<m

gn∑
i=1

∣∣uin〉〈uin∣∣+

∫ ∞
am

|va〉〈va| da

= 1̂. (1.32)

Exercise 1.1. Let us consider a three-dimensional discrete space where an observable
Â has the following eigenkets, represented as column vectors,
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|u1〉 =

 1
0
0

 (1.33)

∣∣u12〉 =
1√
2

 0
1
i

 (1.34)

∣∣u22〉 =
1√
2

 0
1
−i

 . (1.35)

The ket |u1〉 has the eigenvalue a1, while
∣∣u12〉 and ∣∣u22〉 are degenerate and share the eigen-

value a2. Determine i) the matrices for the projectors P̂1 and P̂2 for the two subspaces
that span the whole three-dimensional space, ii) the matrix for the overall projector of
that three-dimensional space, iii) the matrix for the observable Â, and iv) verify that in
general P̂nj = P̂j .

Solution.
First, we can verify that all the eigenvectors are normalized. That is,

〈u1 |u1〉 =
(

1 0 0
) 1

0
0


= 1 (1.36)

〈
u12
∣∣u12〉 =

1

2

(
0 1 −i

) 0
1
i


= 1 (1.37)

〈
u22
∣∣u22〉 =

1

2

(
0 1 i

) 0
1
−i


= 1. (1.38)

It is also straightforward to verify that they are mutually orthogonal. That is,
〈
u1
∣∣ui2〉 =〈

ui2

∣∣∣uj2〉 = 0, with i 6= j.
i) For the projectors we have
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P̂1 = |u1〉〈u1|

=

 1
0
0

( 1 0 0
)

=

 1 0 0
0 0 0
0 0 0

 (1.39)

and

P̂2 =
∣∣u12〉〈u12∣∣+

∣∣u22〉〈u22∣∣
=

1

2

 0
1
i

( 0 1 −i
)

+
1

2

 0
1
−i

( 0 1 i
)

=
1

2

 0 0 0
0 1 −i
0 i 1

+
1

2

 0 0 0
0 1 i
0 −i 1


=

 0 0 0
0 1 0
0 0 1

 . (1.40)

ii) The projector for the three-dimensional space is therefore

P̂ = P̂1 + P̂2

=

 1 0 0
0 0 0
0 0 0

+

 0 0 0
0 1 0
0 0 1


=

 1 0 0
0 1 0
0 0 1


= 1̂. (1.41)

iii) Using the
{
|u1〉 ,

∣∣u12〉 , ∣∣u22〉} basis we can determine the matrix representation for
the observable as

Â = a1P̂1 + a2P̂2

=

 a1 0 0
0 a2 0
0 0 a2

 . (1.42)
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And it is easy to verify that Â |u1〉 = a1 |u1〉 and Â
∣∣ui2〉 = a2

∣∣ui2〉, with i = 1, 2.
iv) For any projector, either in a subspace or the full space, we have

P̂nj = P̂n−2j P̂ 2
j

= P̂n−2j

∑
l

∣∣∣ulj〉〈ulj∣∣∣ ·∑
m

∣∣umj 〉〈umj ∣∣
= P̂n−2j

∑
l,m

∣∣∣ulj〉〈ulj ∣∣∣umj 〉 〈umj ∣∣
= P̂n−2j

∑
l,m

∣∣∣ulj〉 δlm 〈umj ∣∣
= P̂n−2j

∑
m

∣∣umj 〉〈umj ∣∣
= P̂n−1j , (1.43)

and through repeating the same steps another n− 2 times we can easily find that

P̂nj = P̂j . (1.44)

1.1.5 Fifth Postulate

If the measurement of the physical quantity A on a system in the state |ψ〉 gave the value
“a” as a result, then state of the system immediately following the measurement is given
by the new state |ψ′〉 such that (for discrete states)

∣∣ψ′〉 =
P̂n |ψ〉√〈
ψ
∣∣∣ P̂n ∣∣∣ψ〉 , (1.45)

where P̂n is the projector corresponding to the subspace of eigenvalue a. This postulate
simply ensures that the new ket (or wave function) describing the system after a mea-
surement is suitably normalized to unity. Indeed, we can verify from equations (1.20)
and (1.22) that

∣∣ψ′〉 =

∑gn
i=1

∣∣uin〉 〈uin ∣∣ψ〉√∑gn
i=1 〈ψ |uin〉 〈uin |ψ〉

=

∑gn
i=1 c

i
n

∣∣uin〉√∑gn
i=1 |cin|

2
(1.46)

and therefore
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〈
ψ′
∣∣ψ′〉 =

∑gn
j=1

〈
ujn

∣∣∣ (cjn)∗ ·∑gn
i=1 c

i
n

∣∣uin〉∑gn
i=1 |cin|

2

=

∑gn
j=1

∑gn
i=1

(
cjn
)∗
cinδij∑gn

i=1 |cin|
2

=

∑gn
i=1

∣∣cin∣∣2∑gn
i=1 |cin|

2

= 1. (1.47)

It is important to note that some wave functions, related to observables possessing
a continuous spectrum, are not normalizable. For example, let us consider the one-
dimensional case where an eigenvector |ψ〉 is expanded using the basis {|ξ〉} associated
to some observable ξ̂ as follows

|ψ〉 =

∫ ∞
−∞

dξ c (ξ) |ξ〉 , (1.48)

with ξ a variable possessing a continuous spectrum and c (ξ) = 〈ξ |ψ〉. Resorting to the
(one-dimensional) position representation we can also write

c (ξ) =

〈
ξ

∣∣∣∣ ∫ ∞
−∞

dx |x〉〈x|
∣∣∣∣ψ〉

=

∫ ∞
−∞

dx 〈ξ |x〉 〈x |ψ〉

=

∫ ∞
−∞

dxϕ∗ξ (x)ψ (x) , (1.49)

with ϕξ (x) = 〈x | ξ〉 and, as usual, ψ (x) = 〈x |ψ〉. Projecting equation (1.48) on 〈x|
gives

ψ (x) = 〈x |ψ〉

=

∫ ∞
−∞

dξ c (ξ) 〈x | ξ〉

=

∫ ∞
−∞

dξ c (ξ)ϕξ (x) ,

which upon insertion in equation (1.49) yields

c (ξ) =

∫ ∞
−∞

dξ′ c
(
ξ′
) [∫ ∞

−∞
dxϕ∗ξ (x)ϕξ′ (x)

]
(1.50)
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and we must therefore have∫ ∞
−∞

dxϕ∗ξ (x)ϕξ′ (x) = δ
(
ξ − ξ′

)
. (1.51)

It is clear that setting ξ′ = ξ in this equation shows that the wave function ϕξ (x)

associated to the observable ξ̂, which possesses a continuous spectrum, is not normalized
since the probability |c (ξ)|2 dξ that it is found between ξ and ξ+dξ is infinite. Nonethe-
less, such representations are still useful as ratios of probabilities at, say, two values ξ1
and ξ2 can still be evaluated. That is, |c (ξ1)|2 / |c (ξ2)|2 is a well defined and meaningful
quantity.

1.1.6 Sixth Postulate

The dynamical evolution of a quantum mechanical system can be calculated using dif-
ferent approaches. Originally, Heisenberg and Schrödinger independently came up with
different but equivalent pictures, but other points of view also exist (e.g., Feynman’s sum
over histories or path integral approach). For the present chapter we will concentrate on
the Schrödinger picture (and the corresponding equation), while other approaches will
be investigated later on.
Although it is possible to give a “derivation” of the Schrödinger equation, it is sufficient

for our purposes to introduce it as the sixth, and last, postulate of quantum mechanics:

The time evolution of the state vector of a system is dictated by the Schrödinger equa-
tion

i~
d

dt
|ψ (t)〉 = Ĥ (t) |ψ (t)〉 , (1.52)

where Ĥ (t) is the Hamiltonian of the system, i.e., the observable associated with the
energy of the system.

In most cases, we will be dealing with a time-independent Hamiltonian that has so-
called stationary states whose norms do not change as a function of time (see below).
It is also easy to see that in this case a formal solution to equation (1.52) is

|ψ (t)〉 = e−iĤt/~ |ψ (0)〉 . (1.53)

In cases where |ψ (0)〉 = |ϕ〉, with |ϕ〉 is an eigenvector of Ĥ (i.e., one of the aforemen-
tioned stationary states), equation (1.53) becomes

|ψ (t)〉 = e−iEt/~ |ϕ〉 (1.54)

for E the energy eigenvalue associated with the state |ϕ〉. It is clear that

〈ψ (t) |ψ (t)〉 = 〈ϕ |ϕ〉 , (1.55)

and if we insert equation (1.54) into the Schrödinger equation (i.e., (1.52)), then we find
that
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Ĥ |ϕ〉 = E |ϕ〉 . (1.56)

Equation (1.56) is often referred to as the time-independent Schrödinger equation.
Finally, we note that in the more general case |ψ (0)〉 can always be expanded with the

basis {|ϕn〉} containing the eigenvectors of Ĥ of energy eigenvalues En with

|ψ (0)〉 =
∑
n

cn (0) |ϕn〉 . (1.57)

It follows from equation (1.53) that the time evolution of a given state |ψ (t)〉 is expressed
as

|ψ (t)〉 =
∑
n

e−iEnt/~cn (0) |ϕn〉 (1.58)

It is important to note that since the observables r̂ and p̂ associated with the position
and the momentum, respectively, do not commute (i.e., r̂ · p̂ 6= p̂ · r̂; see Section 1.3) and
that they usually appear in expressions for the Hamiltonian, rules of symmetry must be
used when dealing with their products. For example, the following transformation would
be applied for the simple product r̂ · p̂

r̂ · p̂ =⇒ 1

2
(r̂ · p̂ + p̂ · r̂) . (1.59)

1.2 The Principles of Quantum Mechanics

A few principles need to be added to the previous postulates in order to use the formalism
of quantum mechanics to make predictions on experiments, and to ensure that it is
consistent with the results of classical mechanics on the large scale.

1.2.1 The Principle of Superposition

We already know that the state of a quantum mechanical system is entirely contained
within a ket, say, ϕ1, which can be a function of time. It may be the case, however,
that several different states ϕj , with j = 1, 2, . . . , n, are available for the system. The
Principle of Superposition then states that

If several states are available for a quantum mechanical system, then it can also be in
any possible linear combinations of them.

In mathematical terms this means that the most general form for the state ψ of the
system is given by

ψ =
n∑
j=1

cj |ϕj〉 (1.60)

where cj = 〈ϕj |ψ〉 are complex coefficients. As we shall see later, the superposition of
states is essential to explain the coherence observed in quantum mechanical systems.
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1.2.2 The Principle of Complementarity

The superposition of states is responsible for the presence of interference (and coherence)
in quantum mechanical systems. This experimental fact can be understood if one accepts
that a system evolves as a “wave” (i.e., according to the Schrödinger equation) while mea-
surements always yield the detection of particles (e.g., photons, electrons, etc.). This was
first made explicit by Bohr when he enunciated his Principle of Complementarity,
which can be stated as follows1

It is not possible to describe physical observables simultaneously and completely in terms
of particles and waves.

What this principle implies is that attempts to acquire knowledge on the state of a
system (e.g., the path a particle takes) cannot be accomplished without disturbing it
and changing its state. In other word, the interference that would be detected for the
undisturbed system (i.e., the wave-like behaviour) will be affected by the act of acquiring
information on its state. It is important to emphasize that this complementarity does
not imply that the wave character of the system has to be completely suppressed in the
process (although it can be).

1.2.3 The Correspondence Principle

Although the picture of the microscopic world provided by quantum mechanics is often
completely at odds with what we would expect on large scales with classical mechanics, it
must be that the two realms are consistent with one another and come to an agreement
at some intermediate scale. Importantly, predictions made with quantum mechanics
must agree with those of classical mechanics in conditions where the applicability of the
latter is warranted. This requirement is formulated through Bohr’s Correspondence
Principle

Quantum mechanical physical quantities should tend to the classical mechanical coun-
terparts in the macroscopic limit.

Mathematically, the macroscopic limit is reached when the Planck constant h is negli-
gible compared to the action of the system2. In such cases, quantum mechanical effects
and phenomena have no consequence on the behaviour of the system.

1There are many different ways with which the Principle of Complementarity can be stated. Alterna-
tively, Auletta, Fortunato and Parisi define it with “Complete knowledge of the path is not compatible
with the presence of interference.”

2The action is defined by S =
∫
L (qi, q̇i, t) dt, where the Lagrangian L (qi, q̇i, t) is a function of the

generalized coordinates qi and velocities q̇i, and potentially time (i = 1, . . . , n, with n the number of
degrees of freedom of the system under consideration).
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1.3 The Position and Momentum Operators and their
Commutators

Two measurable physical quantities that are included in the expression for the classical
Hamiltonian are the position r and the momentum p vectors. Correspondingly, it is
necessary to introduce these operators r̂ and p̂ when setting up the quantum mechanical
Hamiltonian. These two operators can be broken down into the usual three components

r̂ = x̂ex + ŷey + ẑez (1.61)
p̂ = p̂xex + p̂yey + p̂zez. (1.62)

The complete basis {|r〉} contains the eigenvectors for r̂. More precisely, we can write

|r〉 = |x〉 |y〉 |z〉 , (1.63)

and

x̂ |x〉 = x |x〉 (1.64)

or

x̂ |r〉 = x |r〉 . (1.65)

Similar relations hold for ŷ and ẑ. We can also define a complete basis {|p〉} of eigen-
vectors for the momentum operator such that

|p〉 = |px〉 |py〉 |pz〉 (1.66)
p̂x |px〉 = px |px〉 (1.67)
p̂x |p〉 = px |p〉 , (1.68)

and so on. The question is: what is the representation for p̂ when acting on the basis |r〉
(or that of r̂ on {|p〉})? To answer this question we first note that the momentum basis
satisfies relations that are similar to that satisfied by the position basis. That is,

|p0〉 ⇐⇒ δ (p− p0) (1.69)〈
p
∣∣p′〉 = δ

(
p− p′

)
(1.70)∫ ∞

−∞
d3p |p〉〈p| = 1̂ (1.71)

〈p |ψ〉 = ψ (p) . (1.72)

We now combine equation (1.70) with equation (1.15) for the completeness of the |r〉
basis
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〈
p
∣∣p′〉 =

∫ ∞
−∞

d3x 〈p | r〉
〈
r
∣∣p′〉

=

∫ ∞
−∞

d3x v∗ (r;p) v
(
r;p′

)
= δ

(
p− p′

)
, (1.73)

where v (r;p) ≡ 〈r |p〉 and is to be determined. Alternatively, we can combine equation
(1.5) and equation (1.71) and get

〈
r
∣∣ r′〉 =

∫ ∞
−∞

d3p 〈r |p〉
〈
p
∣∣ r′〉

=

∫ ∞
−∞

d3p v (r;p) v∗
(
r′;p

)
= δ

(
r− r′

)
. (1.74)

We can consider equations (1.73) and (1.74) as the relations that define v (r;p). One
form that satisfy these conditions is

v (r;p) =
1

(2π~)3/2
eip·r/~, (1.75)

with ~ Planck’s constant (divided by 2π).

[Note: The fact that equation (1.75) satisfies both equations (1.73) and (1.74) can
be verified by considering the Fourier transform pair between a function f (r) and its
transform f (p)

f (r) =
1

(2π~)3/2

∫ ∞
−∞

d3p f (p) eip·r/~ (1.76)

f (p) =
1

(2π~)3/2

∫ ∞
−∞

d3r f (r) e−ip·r/~. (1.77)

These equations imply the following duality between the Fourier transform and its
inverse

f (r) ⇐⇒ f (p) (1.78)
f (−r) ⇐⇒ f (p) . (1.79)

For example, if we set f (r) = δ (r− r′), it is then easy to show from equation (1.77) that
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f (p) =
1

(2π~)3/2

∫ ∞
−∞

d3r δ
(
r− r′

)
e−ip·r/~

=
1

(2π~)3/2
e−ip·r

′/~.

Therefore, from equations (1.76) and (1.79) we have

δ
(
p− p′

)
=

1

(2π~)3/2

∫ ∞
−∞

d3r

[
1

(2π~)3/2
eir·p

′/~

]
e−ir·p/~, (1.80)

which is the same as equation (1.73) when v (r;p) is given by equation (1.75). Similarly,
we can first set f (p) = δ (p + p′) in equation (1.76) to get

f (r) =
1

(2π~)3/2

∫ ∞
−∞

d3p δ
(
p + p′

)
eip·r/~

=
1

(2π~)3/2
e−ip

′·r/~,

and again from equations (1.77) and (1.79)

δ
(
−r + r′

)
= δ

(
r− r′

)
=

1

(2π~)3/2

∫ ∞
−∞

d3p

[
1

(2π~)3/2
e−ir

′·p/~

]
eir·p/~,

which is the same as equation (1.74) with v (r;p) defined by equation (1.75).]

Having established that

〈r |p〉 =
1

(2π~)3/2
eir·p/~, (1.81)

consider equation (1.1) while using the completeness relation for {|p〉} (i.e., equation
(1.71))

ψ (r, t) = 〈r |ψ (t)〉

=

∫ ∞
−∞

d3p 〈r |p〉 〈p |ψ (t)〉

=
1

(2π~)3/2

∫ ∞
−∞

d3p eip·r/~ψ (p, t) , (1.82)

with ψ (p, t) ≡ 〈p |ψ (t)〉. It is therefore apparent from this last equation that the two
different forms of the wave function are related through the Fourier transform pair
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ψ (r, t)⇐⇒ ψ (p, t) . (1.83)

Finally, consider the action of the momentum operator on the ket |ψ (t)〉 with

〈r | p̂ |ψ (t)〉 =

∫ ∞
−∞

d3p 〈r | p̂ |p〉 〈p |ψ (t)〉

=

∫ ∞
−∞

d3pp 〈r |p〉ψ (p, t)

=
1

(2π~)3/2

∫ ∞
−∞

d3ppeip·r/~ψ (p, t)

= −i~∇

[
1

(2π~)3/2

∫ ∞
−∞

d3p eip·r/~ψ (p, t)

]
= −i~∇〈r |ψ (t)〉 . (1.84)

We therefore find the fundamental result that the action of the momentum operator in
the position basis {|r〉} is represented by

p̂⇒ −i~∇. (1.85)

In quantum mechanics the order with which measurements are made (or we apply
operators) can be important. For example, the act of measuring the momentum of a
system can affect its position, and vice-versa. It is therefore interesting to calculate the
difference between two sets of operations. Consider the following

|∆〉 = (r̂p̂− p̂r̂) |ψ〉 , (1.86)

the ket resulting from the difference between operating with the momentum before the
position on a system |ψ〉 and the opposite sequence. To proceed further, we project both
sides of equation (1.86) on 〈r|, and use equation (1.85) to get

〈r |∆〉 = 〈r | (r̂p̂− p̂r̂) |ψ〉
= r 〈r | p̂ |ψ〉 − 〈r| p̂ (r̂ |ψ〉)
= −i~ [r∇〈r |ψ〉 − ∇ 〈r | r̂ |ψ〉]
= −i~ [r∇〈r |ψ〉 − ∇ (r 〈r |ψ〉)]
= −i~

[
r∇〈r |ψ〉 − 1̂ 〈r |ψ〉 − r∇〈r |ψ〉

]
= i~1̂ 〈r |ψ〉 .

We, therefore, find the following important result

[r̂, p̂] ≡ r̂p̂− p̂r̂

= i~1̂ (1.87)
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and scalar potentials enter into quantum mechanics. It is, in fact, just because
momentum and energy play a central role in quantum mechanics that A and „
provide the most direct way of introducing electromagnetic e�ects into quantum
descriptions.

SOURCE

L

d

WALL

a

2

1

DETECTOR

x

x

I

Fig. 15-5. An interference experiment with electrons (see also Chap-
ter 37 of Vol. I).

We must review a little how quantum mechanics works. We will consider
again the imaginary experiment described in Chapter 37 of Vol. I, in which
electrons are di�racted by two slits. The arrangement is shown again in Fig. 15-5.
Electrons, all of nearly the same energy, leave the source and travel toward a wall
with two narrow slits. Beyond the wall is a “backstop” with a movable detector.
The detector measures the rate, which we call I, at which electrons arrive at a
small region of the backstop at the distance x from the axis of symmetry. The
rate is proportional to the probability that an individual electron that leaves
the source will reach that region of the backstop. This probability has the
complicated-looking distribution shown in the figure, which we understand as due
to the interference of two amplitudes, one from each slit. The interference of the
two amplitudes depends on their phase di�erence. That is, if the amplitudes are
C1e

i�1 and C2e
i�2 , the phase di�erence ” = �1 ≠�2 determines their interference

pattern [see Eq. (29.12) in Vol. I]. If the distance between the screen and the
slits is L, and if the di�erence in the path lengths for electrons going through

15-15

Figure 1.1: The Young double slit experiment where electrons are diffracted by two nar-
row slits separated by a distance d to a screen some distance L away. From
The Feynman Lectures on Physics - Vol. II.

or alternatively

[r̂j , p̂k] = i~δjk, (1.88)

where [r̂, p̂] is the commutator of r̂ and p̂. It should also be obvious that

[r̂j , r̂k] = [p̂j , p̂k] = 0. (1.89)

Exercise 1.2. The Young Double Slit Experiment and the Principle of Com-
plementarity
Let us consider the double slit experiment shown in Figure 1.1, where electrons are

emitted from a source and diffracted by two narrow slits separated by a distance d to a
screen some distance L� d away. i) Find the probability density P (x) of detecting an
electron at position x on the detector, assuming that the transmissivity through the two
slits are A2 and B2 (with A2 +B2 = 1), and ii) vary A (and therefore also B) to discuss
the system’s behaviour from the point of view of the Principle of Complementarity.

Solution.
i) As we have seen with the Sixth Postulate, a quantum mechanical system in a

stationary state ψ (r, t0) of (constant) energy E at time t0 will evolve according to the
Schrödinger equation such that at a later time t the wave function becomes (see equation
(1.54))

ψ (r, t) = e−iE(t−t0)/~ψ (r, t0) . (1.90)
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For simplicity, let us set ϕ (r) = ψ (r, t0) from now on. For a free particle, such an the
electron in this set-up, the time-independent Schrödinger equation is

Ĥϕ (r) =
p̂2

2m
ϕ (r)

= − ~2

2m
∇2ϕ (r)

= Eϕ (r) . (1.91)

and is easily solved to yield

ϕ (r) = Aeip·r/~, (1.92)

with A some constant we choose to be real and greater than 0 (note that this wave func-
tion is not normalizable over all space). These equations also imply that E = p2/ (2m).
Referring to the figure, as an electron diffracts it will acquire a different phase depending
which path (i.e., paths 1 and 2 in Figure 1.1) or slit it goes through as it reaches the
detector at point x. Allowing for the possibility that an electron goes through either or
both slits, we use the Principle of Superposition and write for the wave function of the
system at x and time t (we set t0 = 0 for simplicity)

ψ (r, t) = Aei(p·r1−Et)/~ +Bei(p·r2−Et)/~. (1.93)

The probabilities (or the corresponding transmissivities) that an electron goes through
paths r1 and r2 are proportional to, respectively, A2 and B2, with A2 + B2 = 1. The
probability density P (x) of detecting an electron at x on the detector is given by

P (x) ∝ |ψ (r, t)|2

∝ A2 +B2 + 2AB cos (δ0) (1.94)

with (using p = ~k)

δ0 =
1

~
p · (r1 − r2)

= 2π
xd

Lλ
. (1.95)

The set consisting of equations (1.94)-(1.95) is a good solution for the problem as long
as x � L, and its oscillatory behaviour is a typical example of quantum mechanical
interference or coherence. Notably, we have that Pmin ∝ A2+B2−2AB, at x = nLλ/ (2d)
(with |n| = 1, 3, . . .), and Pmax ∝ A2+B2+2AB, at x = mLλ/ (2d) (with |m| = 0, 2, . . .).
ii) Let us now quantify the wave characteristics of (or level of interference in) the

system with the visibility (remember that A2 +B2 = 1)
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V =
Pmax − Pmin

Pmax + Pmin

= 2AB. (1.96)

We further introduce the predictability (with 1/
√

2 ≤ A ≤ 1, such that 0 ≤ Pr ≤ 1)

Pr = A2 −B2. (1.97)

We see that for A = B = 1/
√

2 the visibility is maximum at V = 1, while the predictabil-
ity is minimum with Pr = 0. The converse is true when A = 1 (and B = 0) where V = 0
and Pr = 1. The predictability is then tied to the precision with which we can assert
through what slit the electrons are likely to go through. That is, when A = B = 1/

√
2 an

electron is as likely to go through either slits (i.e., we have complete unpredictability with
Pr = 0) and the systems exhibits the maximum amount of wavelike behaviour (V = 1),
while if A = 1 and B = 0 we are certain of the provenance of the electrons (i.e., we
have total predictability with Pr = 1) and the systems loses its wavelike characteristics
(V = 0). We thus find that visibility and predictability are in opposition. In fact, it is
easy to verify from equations (1.96)-(1.97) that

V2 + Pr2 = 1. (1.98)

We can associate this last equation to the Principle of Complementarity. That is, by
increasing the degree of knowledge we have on the path taken by the electrons (the pre-
dictability) we suppress the amount of interference exhibited by the system (the visibility
decreases), and vice-versa. We see that the complementarity between the particle and
wave behaviours varies smoothly with the value assigned to A, i.e., complementarity is
not limited to all of one of the other.

1.4 Matrix Elements, Expectation Values, and Unitary
Operators

1.4.1 Matrix Elements

In case of an arbitrary observable Ô for which a basis {|ui〉} does not consists of its
eigenvectors, we can always write

Ô =
∑
i

|ui〉〈ui| Ô

=
∑
i,j

|ui〉〈ui| Ô |uj〉〈uj |

=
∑
i,j

Oij |ui〉〈uj | , (1.99)

20



1 Fundamentals of Quantum Mechanics

where Oij =
〈
ui

∣∣∣ Ô ∣∣∣uj〉. It can easily be shown that Oij are the matrix elements of the

observable Ô when represented using the basis {|ui〉}.

Exercise 1.3. i) Consider the following two-dimensional basis

|u1〉 =

(
1
0

)
(1.100)

|u2〉 =

(
0
1

)
(1.101)

and the observable

Ô =

(
O11 O12

O21 O22

)
. (1.102)

Calculate the matrix elements Oij =
〈
ui

∣∣∣ Ô ∣∣∣uj〉, and verify that Ô is recovered with
equation (1.99).
ii) Now consider the new basis

|v1〉 =
1√
2

(|u1〉+ i |u2〉)

=
1√
2

(
1
i

)
(1.103)

|v2〉 =
1√
2

(|u1〉 − i |u2〉)

=
1√
2

(
1
−i

)
(1.104)

and the matrix representation of the observable for this basis

Ô′ =

(
O′11 O′12
O′21 O′22

)
. (1.105)

Calculate Oij =
〈
vi

∣∣∣ Ô′ ∣∣∣ vj〉. What do you conclude from these calculations?

Solution.
i) We can easily determine the matrix elements with

O11 =
〈
u1

∣∣∣ Ô ∣∣∣u1〉
=

(
1 0

)( O11 O12

O21 O22

)(
1
0

)
= O11, (1.106)
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as expected, and similarly for Oij using the other possible combinations of i and j. It is
also easy to show that since, in this case,

|u1〉〈u1| =

(
1 0
0 0

)
|u1〉〈u2| =

(
0 1
0 0

)
|u2〉〈u1| =

(
0 0
1 0

)
|u2〉〈u2| =

(
0 0
0 1

)
,

then we have from equation (1.99)

Ô =

(
O11 O12

O21 O22

)
. (1.107)

ii) Things are different with the {|vi〉} basis. Although it would be possible to calculate
Oij using matrix and vector multiplication as was done for equation (1.106), it is perhaps
easier to proceed as follows. We first note that we can write

|vi〉 =

2∑
m=1

cim |um〉 (1.108)

and therefore

Oij =
〈
vi

∣∣∣ Ô′ ∣∣∣ vj〉
=

2∑
m,n=1

c∗imcjn

〈
um

∣∣∣ Ô′ ∣∣∣un〉

=
2∑

m,n=1

c∗imcjnO
′
mn, (1.109)

where we used our result from part i) for the last step (see equation (1.106)). The
coefficients are easily determined from equations (1.103) and (1.104) (i.e., c11 = c21 =
1/
√

2 and c12 = −c22 = i/
√

2). It follows that

O11 =
1

2

[(
O′11 +O′22

)
+ i
(
O′12 −O′21

)]
(1.110)

O12 =
1

2

[(
O′11 −O′22

)
− i
(
O′12 +O′21

)]
(1.111)

O21 =
1

2

[(
O′11 −O′22

)
+ i
(
O′12 +O′21

)]
(1.112)

O22 =
1

2

[(
O′11 +O′22

)
− i
(
O′12 −O′21

)]
. (1.113)
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It is apparent that the form of the matrix elements Oij is more complicated when
the basis used is not the simplest (Cartesian) basis as that given by equations (1.100)-
(1.101). That is, it should not in general be assumed that the elements obtained with〈
vi

∣∣∣ Ô′ ∣∣∣ vj〉 will yield those of the matrix in the corresponding representation (i.e., in
this case Oij 6= O′ij).

1.4.2 Expectation Values

Let us now generalize the notation we used to define the matrix element
〈
ui

∣∣∣ Ô ∣∣∣uj〉
to
〈
ψ
∣∣∣ Ô ∣∣∣ψ〉, where |ψ〉 is the state of the system, and inquire as to the meaning of

this quantity. We now assume that the basis {|ui〉} is composed of eigenvectors of the
observable Ô, and expand state ket

|ψ〉 =
∑
i

ci |ui〉 . (1.114)

We now write

〈
Ô
〉
ψ
≡

〈
ψ
∣∣∣ Ô ∣∣∣ψ〉

=
∑
i,j

c∗i cj

〈
ui

∣∣∣ Ô ∣∣∣uj〉
=

∑
i,j

c∗i cjoj 〈ui |uj〉

=
∑
i,j

c∗i cjojδij

=
∑
j

|cj |2 oj . (1.115)

Since the probability of finding the eigenvalue oj (or, equivalently, to find the system in
state |uj〉) is given by P (oj) = |cj |2 (see equation (1.21)), we find that〈

Ô
〉
ψ

=
∑
j

P (oj) oj . (1.116)

It should be clear that
〈
Ô
〉
ψ
is simply the average of the eigenvalues of Ô. Since the

ket |ψ〉 can be expanded using any complete basis, not only the basis {|ui〉} composed of
its eigenvectors, it follows that the relation

〈
ψ
∣∣∣ Ô ∣∣∣ψ〉 is basis independent. That is, we

can extend this definition for the expectation value
〈
Â
〉
ψ
to any observable Â for any

(normalized) state |ψ〉 of a quantum mechanical system whether or not it is expanded
with the observables eigenvectors
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〈
Â
〉
ψ

=
〈
ψ
∣∣∣ Â ∣∣∣ψ〉 . (1.117)

Finally, we note that equation (1.117) can be expressed using the wave function ψ (r)
through

〈
Â
〉
ψ

=

∫ ∞
−∞

d3r 〈ψ | r〉
〈
r
∣∣∣ Â ∣∣∣ψ〉

=

∫ ∞
−∞

d3r ψ∗ (r) Âψ (r) , (1.118)

where we defined Âψ (r) ≡
〈
r
∣∣∣ Â ∣∣∣ψ〉 (e.g., if Â = p̂x, then p̂xψ (r) = −i~ ∂ψ (r) /∂x).

1.4.3 Unitary Operators and Change of Basis

Given a state vector |ψ〉, we are, as we already know, free to expand it using any complete
basis existing for the corresponding space. For example, if {|ui〉} and {|vi〉} are two such
bases, then we can write

|ψ〉 =
∑
i

ci |ui〉 (1.119)

=
∑
i

di |vi〉 (1.120)

where ci = 〈ui |ψ〉 and di = 〈vi |ψ〉. The two bases are related to each other through a
transformation such that, for example,

|vi〉 =

∑
j

|uj〉〈uj |

 |vi〉
=

∑
j

〈uj | vi〉 |uj〉

=
∑
j

Uji |uj〉 , (1.121)

where Uji = 〈uj | vi〉. Inserting equation (1.121) into equation (1.120) we find

|ψ〉 =
∑
i

di
∑
j

Uji |uj〉

=
∑
j

[∑
i

Ujidi

]
|uj〉 , (1.122)
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which implies, from equation (1.119) that

cj =
∑
i

Ujidi. (1.123)

We therefore see that Uji are the elements of the transformation matrix Û between the
two bases. Interestingly, if we consider the adjoint of Û and calculate Û †Û

∑
j

(
Û †
)
kj
Uji =

∑
j

U∗jkUji

=
∑
j

(〈uj | vk〉)∗ 〈uj | vi〉

=
∑
j

〈vk |uj〉 〈uj | vi〉

= 〈vk|

∑
j

|uj〉〈uj |

 |vi〉
= 〈vk | vi〉
= δki, (1.124)

or

Û †Û = 1̂. (1.125)

Similarly, we can show that Û Û † = 1̂. Matrices that verify Û † = Û−1 are called unitary
matrices.
We saw in the previous section that matrix elements are of the form Oij =

〈
vi

∣∣∣ Ô ∣∣∣ vj〉
in the basis {|vi〉}. Let us now consider the trace of the matrix, while introducing a
change to the basis {|ui〉}

Tr
(

Ô
)

=
∑
i

Ôii

=
∑
i

〈
vi

∣∣∣ Ô ∣∣∣ vi〉
=

∑
i,j,k

[
〈uj |U∗ji

]
Ô [Uki |uk〉]

=
∑
i,j,k

〈uj |
(
U∗jiÔUki

)
|uk〉 , (1.126)

which we are free to rearrange as
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Tr
(

Ô
)

=
∑
j,k

〈uj |

[
Ô

(∑
i

UkiU
∗
ji

)]
|uk〉

=
∑
j,k

δjk

〈
uj

∣∣∣ Ô ∣∣∣uk〉
=

∑
j

〈
uj

∣∣∣ Ô ∣∣∣uj〉 , (1.127)

with the result that the trace of an operator is independent of the basis used.
We can also verify that a unitary transformation preserves the scalar product between

two arbitrary kets (vectors). For example, let us consider the kets |ϕ1〉 and |ϕ2〉 that
can be expressed with two bases {|ui〉} and {|vi〉} related by a unitary transformation U
through (see equations (1.121))

|vi〉 =
∑
j

Uji |uj〉 . (1.128)

As was previously done, we also write (α = 1, 2)

|ϕα〉 =
∑
i

cαi |ui〉 (1.129)

=
∑
i

dαi |vi〉 , (1.130)

while we know from equation (1.123) that

cαi =
∑
k

Uikdαk. (1.131)

When calculating the scalar product, first using in turn equations (1.129), (1.131) and
(1.124),

〈ϕ1 |ϕ2〉 =
∑
i,j

c∗1ic2j 〈ui |uj〉

=
∑
i

c∗1ic2i

=
∑
i,k,m

d∗1kd2mU
∗
ikUim

=
∑
k,m

d∗1kd2mδkm (1.132)

and now with equation (1.130)
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〈ϕ1 |ϕ2〉 =
∑
k

d∗1kd2k

=
∑
j,k

d∗1jd2k 〈vj | vk〉 , (1.133)

and we therefore see that the unitary transformation Û does not affect the scalar product.
That is, any of the two bases can be used for the expansion of the kets resulting in the
same outcome for the scalar product.
Finally, it is straightforward to verify that unitary transformations preserve the form

of the commutator for two operators. Since for a ket transformation |ψ′〉 = Û |ψ〉 we
have

〈
ψ′
∣∣∣ Â′ ∣∣∣ψ′〉 =

〈
ψ
∣∣∣ Û †Â′Û ∣∣∣ψ〉, then it must be that

Â = Û †Â′Û , (1.134)

and therefore

[
Â, B̂

]
=

[
Û †Â′Û , Û †B̂′Û

]
= Û †Â′Û Û †B̂′Û − Û †B̂′Û Û †Â′Û
= Û †

[
Â′, B̂′

]
Û . (1.135)

Importantly, for two canonical operators Q̂ and P̂ , where
[
Q̂, P̂

]
= i~1̂, we have

[
Q̂′, P̂ ′

]
= Û

[
Q̂, P̂

]
Û †

= Û i~1̂Û †

= i~1̂. (1.136)

Exercise 1.4. It should be apparent by now that the coefficients cij in equation (1.108)
are those of a unitary matrix. Write down that matrix, verify that it is unitary and the
trace of the operator Ô is invariant under the change of basis.

Solution.
Referring to equations (1.103)-(1.104) we can readily write the matrix containing the

cij coefficients of equation (1.108) as

Û =
1√
2

(
1 1
i −i

)
. (1.137)

We therefore have
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Û Û † =
1

2

(
1 1
i −i

)(
1 −i
1 i

)
=

1

2

(
2 0
0 2

)
= 1̂, (1.138)

which verifies that the transformation is unitary. Using equations (1.110) and (1.113) we
can calculate the trace of Ô in the {|ui〉} basis with

O11 +O22 =
1

2

[(
O′11 +O′22

)
+ i
(
O′12 −O′21

)]
+

1

2

[(
O′11 +O′22

)
− i
(
O′12 −O′21

)]
= O′11 +O′22, (1.139)

and the trace is invariant under the change of basis.

1.5 The Heisenberg Inequality

Whenever two observables Q̂ and P̂ satisfy the same commutation relation as the position
and momentum operators, i.e., [

Q̂, P̂
]

= i~, (1.140)

they are said to be conjugate operators. Let us assume that the mean value of both
operators is zero, i.e.,

Q =
〈
ψ
∣∣∣ Q̂ ∣∣∣ψ〉

= 0 (1.141)

P =
〈
ψ
∣∣∣ P̂ ∣∣∣ψ〉

= 0 (1.142)

This is not a restriction, since we could always define new operators by subtracting Q
and P from Q̂ and P̂ , respectively, in the event that they were not null. Now consider
the following quantity

I =
〈
ψ
∣∣∣ Q̂2

∣∣∣ψ〉〈ψ ∣∣∣ P̂ 2
∣∣∣ψ〉 . (1.143)

If we define new states such that
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|1〉 ≡ Q̂ |ψ〉 (1.144)
|2〉 ≡ P̂ |ψ〉 , (1.145)

then using the Schwarz Inequality we can write

I = 〈1 | 1〉 〈2 | 2〉
≥ 〈1 | 2〉 〈2 | 1〉 , (1.146)

since 〈1 | 2〉 is a scalar product. We can rewrite the last part of this inequality as follows

〈1 | 2〉 〈2 | 1〉 =
1

4

[
(〈1 | 2〉+ 〈2 | 1〉)2 − (〈1 | 2〉 − 〈2 | 1〉)2

]
=

1

4

[(〈
ψ
∣∣∣ Q̂P̂ ∣∣∣ψ〉+

〈
ψ
∣∣∣ P̂ Q̂ ∣∣∣ψ〉)2 − (〈ψ ∣∣∣ Q̂P̂ ∣∣∣ψ〉− 〈ψ ∣∣∣ P̂ Q̂ ∣∣∣ψ〉)2]

=
1

4

[(〈
ψ
∣∣∣ Q̂P̂ + P̂ Q̂

∣∣∣ψ〉)2 − (〈ψ ∣∣∣ Q̂P̂ − P̂ Q̂ ∣∣∣ψ〉)2]
=

1

4

[(〈
ψ
∣∣∣ {Q̂, P̂} ∣∣∣ψ〉)2 − (〈ψ ∣∣∣ [Q̂, P̂] ∣∣∣ψ〉)2] . (1.147)

The quantity
{
Q̂, P̂

}
≡ Q̂P̂+P̂ Q̂ is commonly called the anti-commutator, for obvious

reasons. We should note that

(〈
ψ
∣∣∣ {Q̂, P̂} ∣∣∣ψ〉)2 =

∣∣∣〈ψ ∣∣∣ {Q̂, P̂} ∣∣∣ψ〉∣∣∣2
≥ 0, (1.148)

since
〈
ψ
∣∣∣ {Q̂, P̂} ∣∣∣ψ〉 =

〈
ψ
∣∣∣ {Q̂, P̂} ∣∣∣ψ〉∗ because Q̂ and P̂ are observables (i.e., Her-

mitian operators). Taking this result into account, we can now insert equation (1.140)
into equation (1.147) and find〈

ψ
∣∣∣ Q̂2

∣∣∣ψ〉〈ψ ∣∣∣ P̂ 2
∣∣∣ψ〉 ≥ ~2

4
. (1.149)

This last equation is a generalization of the so-called Heisenberg inequality, which
is usually written as follows

∆Q ·∆P ≥ ~
2
, (1.150)

with

∆Q =

√〈
ψ
∣∣∣ Q̂2

∣∣∣ψ〉 (1.151)

∆P =

√〈
ψ
∣∣∣ P̂ 2

∣∣∣ψ〉. (1.152)
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1.6 Diagonalization of Operators

It is often the case that given an operator Â we require to find its set of eigenvalues {ai}
and corresponding eigenvectors {|vi〉}, such that

Â |vi〉 = ai |vi〉 . (1.153)

We start with a basis {|ui〉}, which is not that containing its eigenvectors, and write (see
equation (1.121))

|vj〉 =
∑
k

Ukj |uk〉 . (1.154)

Let us now consider the following

〈
ui

∣∣∣ Â ∣∣∣ vj〉 =
∑
k

Ukj

〈
ui

∣∣∣ Â ∣∣∣uk〉
=

∑
k

UkjAik

= aj 〈ui | vj〉
= aj

∑
k

Ukjδik, (1.155)

where Aik =
〈
ui

∣∣∣ Â ∣∣∣uk〉. The second and fourth equations imply that∑
k

(Aik − ajδik)Ukj = 0. (1.156)

A non-trivial solution to the system of equations specified by (1.156) will be obtained
by setting the following determinant to zero

|Aik − aδik| = 0, (1.157)

when the eigenvalue a = aj . In other words, this is just a typical eigenvalue problem
where all eigenvalues can be evaluated with equation (1.157). Once the eigenvalues aj
have been found, the elements Ukj of the unitary matrix Û can be determined with
equation (1.156). Multiplying equation (1.156) from the left with Û † we write

∑
i,k

(
Û †
)
mi
AikUkj =

∑
i,k

(
Û †
)
mi
ajδikUkj

= aj
∑
k

(
Û †
)
mk

Ukj

= ajδmj , (1.158)

or in matrix form
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Û †ÂÛ = Λ̂ (1.159)

with Λ̂ a diagonal matrix whose elements are the eigenvalues aj (i.e., Λmj = ajδmj).

Exercise 1.5. Since the diagonalization procedure will often be applied to observables
(i.e., Hermitian operators), we consider the case of a two-level system with the corre-
sponding two-dimensional Hamiltonian matrix

Ĥ =

(
E0

1 H12

H∗12 E0
2

)
, (1.160)

where E0
1 and E0

2 are the energy eigenvalues of a quantum mechanical system when
unperturbed (i.e., when H12 = 0) by some interaction with the external world. The
off-diagonal elements H12 and H∗12 are thus representative of that perturbation. In the
unperturbed state the quantum mechanical system can be in the corresponding states∣∣u01〉 and

∣∣u02〉. Diagonalize the perturbed Hamiltonian (i.e., equation (1.160)) find the
perturbed eigenvalues E1 and E2 and the corresponding kets |u1〉 and |u2〉.

Solution.
A straightforward application of equation (1.157), after substituting a→ E and Aik →

Hik, for the determination of the eigenvalues of the Hamiltonian yields

(
E0

1 − E
) (
E0

2 − E
)
− |H12|2 = E2 −

(
E0

1 + E0
2

)
E −

(
|H12|2 − E0

1E
0
2

)
= 0, (1.161)

with the following roots

E1,2 =
1

2

[(
E0

1 + E0
2

)
±
√(

E0
1 + E0

2

)2
+ 4

(
|H12|2 − E0

1E
0
2

)]

=
1

2

[(
E0

1 + E0
2

)
±
√(

E0
2 − E0

1

)2
+ 4 |H12|2

]
. (1.162)

If we set for convenience E0
1 ≤ E0

2 , then we can write (with E1 ≤ E2)

E1 = E0
1 − S (1.163)

E2 = E0
2 + S, (1.164)

where

S =
1

2

[√
∆2 + 4 |H12|2 −∆

]
≥ 0 (1.165)
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and ∆ = E0
2 − E0

1 .
To find the corresponding eigenvectors, we insert these energy levels, one at a time, in

equation (1.156), and then use U †U = 1̂. For example, in the case of E1 equation (1.156)
yields

(
E0

1 − E1

)
U11 +H12U21 = 0 (1.166)

H∗12U11 +
(
E0

2 − E1

)
U21 = 0, (1.167)

of from the second of these equations

U21 = − H∗12
S + ∆

U11, (1.168)

while the unitary condition (
∑

j U
∗
jiUjk = δik) adds the constraint

1 = U∗11U11 + U∗21U21

= |U11|2
[

1 +
|H12|2

(S + ∆)2

]

= |U11|2


[√

∆2 + 4 |H12|2 + ∆

]2
+ 4 |H12|2[√

∆2 + 4 |H12|2 + ∆

]2


= |U11|2 2


√

∆2 + 4 |H12|2√
∆2 + 4 |H12|2 + ∆

 . (1.169)

We are certainly at liberty to write H12 = |H12| eiφ, and we find that (choosing U11 to
be real)

C+ ≡ U11

=
1√
2

1 +
∆√

∆2 + 4 |H12|2

1/2

(1.170)

C− ≡ −U∗21
= eiφ

√
1− U2

11

=
eiφ√

2

1− ∆√
∆2 + 4 |H12|2

1/2

(1.171)
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where the sign and phase of C− (and U21) are dictated by that of H12 through equation
(1.168). A similar exercise for E2 can be shown to yield U22 = U11 = C+ and U12 =
−U∗21 = C−. The eigenvectors are thus given by (see equation (1.154))

|u1〉 = U11

∣∣u01〉+ U21

∣∣u02〉
= C+

∣∣u01〉− C∗− ∣∣u02〉 (1.172)
|u2〉 = U12

∣∣u01〉+ U22

∣∣u02〉
= C−

∣∣u01〉+ C+

∣∣u02〉 . (1.173)

Let’s now concentrate on cases where H12 is real and small, i.e., H∗12 = H12 � ∆. We
can then calculate the following approximations

S =
1

2

[√
∆2 + 4 |H12|2 −∆

]
' 1

2

[
∆

(
1 +

2H2
12

∆2

)
−∆

]
' H2

12

∆
(1.174)

C+ =
1√
2

1 +
∆√

∆2 + 4 |H12|2

1/2

' 1√
2

[
1 +

(
1− 2H2

12

∆2

)]1/2
' 1− H2

12

2∆2
(1.175)

and

C− =
1√
2

1− ∆√
∆2 + 4 |H12|2

1/2

' 1√
2

[
1−

(
1− 2H2

12

∆2

)]1/2
' H12

∆
. (1.176)

We see that the amount by which the states
∣∣u01〉 and

∣∣u02〉 mix to form the new
eigenvectors is a function of both H12 and ∆. The smaller their ratio (i.e., H12/∆) the
more the states and energies of the true Hamiltonian resemble that of the unperturbed
two-level system. It is also apparent that the perturbation has for effect to increase the
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energy difference between the two levels (from equations (1.163)-(1.164) and (1.174)).
Note that when the unperturbed system is degenerate (i.e., ∆ = 0), then C+ = C− = 1
and S = |H12|.

1.7 The Heisenberg Representation

Everything we have covered so far was done in the so-called Schrödinger representation,
where quantum mechanical calculations are done using the Schrödinger equation. With
this formalism, we saw that the time evolution of a quantum mechanical system is con-
tained in the state (or wave function) characterizing the system. We now introduce the
Heisenberg representation where the time dependency is transferred to the observables.
Let us start with |ψS (t)〉 the time-dependent ket representing a quantum mechanical

system and some observable ÔS, both in the Schrödinger representation. We already
know from equation (1.53) that we can express the time evolution of the system using
the unitary operator

Ût = e−iĤt/~ (1.177)

such that

|ψS (t)〉 = Ût |ψS (0)〉 . (1.178)

Evidently, the ket |ψS (0)〉 evaluated at t = 0 is independent of time and we will from
now on make this explicit by defining

|ψH〉 ≡ |ψS (0)〉 . (1.179)

We now consider the expectation value

〈
ψS (t)

∣∣∣ ÔS

∣∣∣ψS (t)
〉

=
〈
ψH

∣∣∣ Û †t ÔSÛt

∣∣∣ψH

〉
=

〈
ψH

∣∣∣ ÔH (t)
∣∣∣ψH

〉
, (1.180)

where we have introduced the time-dependent operator

ÔH (t) ≡ Û †t ÔSÛt. (1.181)

The time derivative of the left-hand side of equation (1.180) yields

d

dt

〈
ψS (t)

∣∣∣ ÔS

∣∣∣ψS (t)
〉

=

[
d

dt
〈ψS (t)|

]
ÔS |ψS (t)〉+ 〈ψS (t)| ÔS

[
d

dt
|ψS (t)〉

]
+

〈
ψS (t)

∣∣∣∣ ∂∂tÔS

∣∣∣∣ψS (t)

〉
, (1.182)

while upon using the Schrödinger equation (1.52),
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d

dt

〈
ψS (t)

∣∣∣ ÔS

∣∣∣ψS (t)
〉

=

[
− 1

i~
〈ψS (t)| Ĥ

]
ÔS |ψS (t)〉+ 〈ψS (t)| ÔS

[
1

i~
Ĥ |ψS (t)〉

]
+

〈
ψS (t)

∣∣∣∣ ∂∂tÔS

∣∣∣∣ψS (t)

〉
= − 1

i~

〈
ψH

∣∣∣ Û †t ĤÔSÛt

∣∣∣ψH

〉
+

1

i~

〈
ψH

∣∣∣ Û †t ÔSĤÛt

∣∣∣ψH

〉
+

〈
ψH

∣∣∣∣ Û †t ∂∂tÔSÛt

∣∣∣∣ψH

〉
. (1.183)

But since
[
Ût, Ĥ

]
= 0 we can write

d

dt

〈
ψS (t)

∣∣∣ ÔS

∣∣∣ψS (t)
〉

=

〈
ψH

∣∣∣∣ { 1

i~

[
ÔH (t) , Ĥ

]
+
∂

∂t
ÔH

} ∣∣∣∣ψH

〉
, (1.184)

where

∂

∂t
ÔH ≡ Û †t

∂

∂t
ÔSÛt. (1.185)

Referring once again to equation (1.180), it is clear that we also have

d

dt

〈
ψS (t)

∣∣∣ ÔS

∣∣∣ψS (t)
〉

=
d

dt

〈
ψH

∣∣∣ ÔH (t)
∣∣∣ψH

〉
=

〈
ψH

∣∣∣∣ ddtÔH (t)

∣∣∣∣ψH

〉
, (1.186)

and, comparing with equation (1.184),

d

dt
ÔH (t) =

1

i~

[
ÔH (t) , Ĥ

]
+
∂

∂t
ÔH. (1.187)

In cases where ÔS does not explicitly depend on time ∂ÔS/∂t = ∂ÔH/∂t = 0, and we
obtain the so-called Heisenberg equation

d

dt
ÔH (t) =

1

i~

[
ÔH (t) , Ĥ

]
. (1.188)

It is important to stress, as was made clear from the previous derivation, that the
Schrödinger and Heisenberg representations are equivalent formulations of quantum me-
chanics and yield the same expectation values for observables and time evolution for a
quantum mechanical system. The main difference being that the time dependence was
transferred from the state vector (for Schrödinger) to the observables (for Heisenberg).
Finally, the Heisenberg equation makes it obvious that an observable that commutes with
Hamiltonian is a conserved quantity, since its time derivative then equals zero.
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Exercise 1.6. Let us consider the one-dimensional quantum mechanical harmonic os-
cillator, which has the following Hamiltonian

Ĥ =
1

2
mω2x̂2 +

p̂2x
2m

, (1.189)

where m and ω are, respectively, the mass of the particle and its frequency of oscillation.
Derive the relevant dynamical equations using the Heisenberg representation.

Solution.
Although it would possible to solve the Heisenberg equations corresponding to this

problem using x̂ and p̂x, we will approach it from a different point of view. More precisely,
we introduce new generalized conjugate canonical variables

Q̂ =
√
mωx̂ (1.190)

P̂ =
p̂x√
mω

(1.191)

and the so-called annihilation (or lowering) and creation (or raising) operators

â =

√
1

2~

(
Q̂+ iP̂

)
(1.192)

â† =

√
1

2~

(
Q̂− iP̂

)
, (1.193)

respectively. We can now verify the following relations

[
Q̂, P̂

]
= [x̂, p̂x]

= i~1̂ (1.194)[
â, â†

]
=

1

2~

(
−i
[
Q̂, P̂

]
+ i
[
P̂ , Q̂

])
(1.195)

= 1̂, (1.196)

and

â†â =
1

2~

(
Q̂− iP̂

)(
Q̂+ iP̂

)
=

1

2~

(
Q̂2 + P̂ 2 + i

[
Q̂, P̂

])
=

1

2~

(
mωx̂2 +

p̂2x
mω
− ~1̂

)
(1.197)

or equivalently
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Ĥ =
~ω
2

(
â†â+ ââ†

)
= ~ω

(
â†â+

1

2

)
. (1.198)

We see from equation (1.198) that although â and â† are not Hermitian, â†â is (and so
is ââ†).
Choosing a basis {|n〉} where the Hamiltonian is diagonal, i.e.,

Ĥ |n〉 = En |n〉 (1.199)

and 〈
m
∣∣∣ Ĥ ∣∣∣n〉 = Enδmn, (1.200)

we then verify that â†â is also diagonal with〈
m
∣∣∣ â†â ∣∣∣n〉 =

(
En
~ω
− 1

2

)
δmn (1.201)

From equation (1.198) we can further calculate the following commutators

[
Ĥ, â†

]
= ~ω

[
â†â, â†

]
= ~ωâ†

[
â, â†

]
= ~ωâ† (1.202)

and [
Ĥ, â

]
= −~ωâ. (1.203)

These equations can be transformed and applied to a state |m〉 with the following
results

Ĥ
(
â† |m〉

)
=

(
â†Ĥ + ~ωâ†

)
|m〉

= (Em + ~ω)
(
â† |m〉

)
(1.204)

Ĥ (â |m〉) =
(
âĤ − ~ωâ

)
|m〉

= (Em − ~ω) (â |m〉) , (1.205)

which imply that both â† |m〉 and â |m〉 are eigenkets of Ĥ with associated eigenvalues,
respectively, increased and decreased by ~ω from that of |m〉. Since the difference in
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energy between two adjacent eigenstates is ~ω and that, from the form of the Hamiltonian
in equation (1.189), the energy of the oscillator cannot be negative, the minimum energy
in equation (1.198) will be found to be Em = ~ω/2 when â†â |m〉 = 0. If we ascribe |0〉
to that minimum energy state, then we can introduce the number operator

N̂ ≡ â†â (1.206)

such that

N̂ |n〉 = â†â |n〉
= n |n〉 . (1.207)

It is then easy to verify that

â† |n〉 =
√
n+ 1 |n+ 1〉 (1.208)

â |n〉 =
√
n |n− 1〉 , (1.209)

since

N̂ |n〉 = â† (â |n〉)

=
√
n
(
â† |n− 1〉

)
= n |n〉 , (1.210)

hence the previous definition of N̂ as the number operator.
We are now in a position to calculate the dynamical equations that characterize the

evolution of the quantum mechanical harmonic oscillator from the application of equation
(1.188) (since â and â† have no implicit dependence on time). We therefore have

dâ

dt
=

1

i~

[
â, Ĥ

]
= −iω

[
â, â†â

]
= −iω

[
â, â†

]
â

= −iωâ, (1.211)

and

dâ†

dt
=

(
dâ

dt

)†
= iωâ†. (1.212)
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It follows from equations (1.190)-(1.193) that

dx̂

dt
=

√
~

2mω

(
dâ

dt
+
dâ†

dt

)
= i

√
~ω
2m

(
â† − â

)
=

p̂x
m

(1.213)

and

dp̂x
dt

= −i
√

~mω
2

(
dâ

dt
− dâ†

dt

)
= −

√
~mω3

2

(
â+ â†

)
= −mω2x̂. (1.214)

Incidentally, we should note that equations (1.213) and (1.214) are in agreement with
the general result (which you should try to prove) stating that

dx̂

dt
=

∂Ĥ

∂p̂x
(1.215)

dp̂x
dt

= −∂Ĥ
∂x̂

. (1.216)

We can further verify that

d2x̂

dt2
=

1

i~

[
dx̂

dt
, Ĥ

]
=

1

i~m

[
p̂x, Ĥ

]
=

1

m

dp̂x
dt

= −ω2x̂, (1.217)

which when combined with equation (1.213) yields

ˆ̈x+ ω2x̂ = 0. (1.218)

This equation is similar to the one found for the classical harmonic oscillator. It is
interesting to calculate the following matrix elements
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〈
m
∣∣∣ (ˆ̈x+ ω2x̂

) ∣∣∣n〉 = ẍmn + ω2xmn, (1.219)

which requires us to determine ˆ̈xmn. This is accomplished using the Heisenberg equation
for a given operator ÔH

Ȯmn =

〈
m

∣∣∣∣ ( 1

i~

[
ÔH, Ĥ

]) ∣∣∣∣n〉
=

〈
m

∣∣∣∣ [ 1

i~

(
ÔHĤ − ĤÔH

)] ∣∣∣∣n〉
= i

(Em − En)

~
Omn

= iωmnOmn, (1.220)

where

ωmn ≡
(Em − En)

~
. (1.221)

Differentiating one more time we find

Ömn =

〈
m

∣∣∣∣ ( 1

i~

[
ˆ̇OH, Ĥ

]) ∣∣∣∣n〉
= iωmnȮmn

= −ω2
mnOmn, (1.222)

and therefore

ẍmn = −ω2
mnxmn. (1.223)

Combining equations (1.219) and (1.223) yields(
ω2 − ω2

mn

)
xmn = 0, (1.224)

which implies that ω = ±ωmn or through equation (1.221)

Em − En = ±~ω. (1.225)

This result is consistent with what was found earlier with equations (1.207) and (1.208),
namely that the energy of the oscillator is quantized and changes by steps of energy ~ω
between adjacent levels.
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